105 research outputs found

    The Generalized Kompaneets Equation.

    Get PDF
    In the dissertation, the generalized Kompaneets equation{\partial u\over\partial t}={1\over\beta(x)}\lbrack\alpha(x)(u\sb{x}+ku+F(x,u))\rbrack\sb{x}(for x,t3˘e0)x,t\u3e0) is studied. For the linear case, when F0,F\equiv0, a complete theory is given. A brief discussion is carried for the nonlinear case when F(x,u)=f(x)g(u).F(x,u)=f(x)g(u).. For the following equation,v\sb{t}=\varphi(y,v\sb{y})v\sb{yy}+\psi(y,v,v\sb{y}),Goldstein and Lin\u27s result is extended to degenerate case. Also, for the following linear operator,Au=α(x)u+β(x)uAu=\alpha(x)u\prime\prime+\beta(x)u\prime(for x[0,x\in \lbrack 0, 1)), Clement and Timmermans\u27 result is extended to the case of discontinuous coefficients α\alpha and β\beta

    Evaluation of nitrogen loading in the last 80 years in an urbanized Asian coastal catchment through the reconstruction of severe contamination period

    Get PDF
    Most semi-enclosed seas have experienced severe eutrophication owing to high nutrient loading from rivers during rapid population growth periods. In Japan, the coastal areas of some megacities (e.g. Tokyo and Osaka) experienced considerable economic growth during the 1960s-1970s. Therefore, determining the amount of nutrient loading during this period is essential to undertake measures for the conservation of coastal environments. However, determining the nutrient loading that occurred several decades ago is generally difficult owing to lacking water quality records. In this study, the nitrogen loading in the Yamato River catchment, an urbanized coastal catchment in Asia, for 80 years from the 1940s to the 2010s is reconstructed using the Soil and Water Assessment Tool. We considered factors such as population growth, wastewater treatment plant (WWTP) construction, and changes in land and fertilizer usage in different urbanization stages. Results show that the total nitrogen loading in the catchment peaked in the 1970s at 6616 tons yr(-1) owing to untreated wastewater discharge and rapid increase in population growth. By reducing 57% of the nitrogen loading in the 2010s from the catchment, WWTPs have been instrumental in improving the water environment. The decrease in and integration of agricultural land has reduced nitrogen loading attributed to nonpoint sources; however, this reduction was not obvious because of the high fertilizer usage before the 2000s. Overall, the findings of this study provide a comprehensive understanding of the impact of rapid urbanization in an Asian coastal catchment on nitrogen loading during the high economic growth period in the past. This study will be useful for the long-term assessment of nutrient loading in other

    Feasibility and Safety of Flow Diversion in the Treatment of Intracranial Aneurysms via Transradial Approach: A Single-Arm Meta-Analysis

    Get PDF
    BackgroundWhile studies have confirmed that flow diversion (FD) can treat intracranial aneurysms via transradial approach (TRA), it remains unclear whether their treatment ultimately impacts safety and feasibility. We aim to conduct a systematic review and meta-analysis assessing the safety and feasibility after FD treatment of intracranial aneurysms via TRA.MethodsPubMed, EMBASE, and Web of Science were systematically reviewed. The primary outcomes were the success rate and the access-related complications of deploying FD via TRA. Meta-analysis was performed using a random or fixed effect model based on heterogeneity. And the publication bias was evaluated using a funnel plot. This study was registered with PROSPERO, number CRD42021244448.ResultsData from 8 studies met inclusion criteria (250 non-duplicated patients). The success rate was 93% (95% confidence interval [CI] 0.86–0.98; I2 = 61.05%; p = 0.01). The access-related complications rate was 1% (95% CI 0–0.03; I2 = 0.00%; p < 0.01). The mainly access-related complications included radial artery spasm (85.7%) and radial artery occlusion (14.3%). The TRA convert to transfemoral approach (TFA) was 7% (95% CI 0.02–0.14; I2 = 61.05%; p = 0.01).ConclusionsAlthough TFA is still the main access for FD in the treatment of intracranial aneurysms, the TRA also has a higher success rate and lower access-related complications rate. With the improvement of future experience and equipment, the TRA may become the main access for FD which has more advantages. Future studies should design prospective, multicenter randomized controlled studies for long-term follow-up

    Plant-Morphing Strategies and Plant-Inspired Soft Actuators Fabricated by Biomimetic Four-Dimensional Printing: A Review

    Get PDF
    From Frontiers via Jisc Publications RouterHistory: collection 2021, received 2021-01-10, accepted 2021-03-09, epub 2021-05-04Publication status: PublishedFor prey, seeding, and protection, plants exhibit ingenious adaptive motions that respond autonomously to environmental stimuli by varying cellular organization, anisotropic orientation of cellulose fibers, mechanical instability design, etc. Notably, plants do not leverage muscle and nerves to produce and regulate their motions. In contrast, they harvest energy from the ambient environment and compute through embodied intelligence. These characteristics make them ideal candidates for application in self-morphing devices. Four-dimensional (4D) printing is a bottom-up additive manufacturing method that builds objects with the ability to change shape/properties in a predetermined manner. A versatile motion design catalog is required to predict the morphing processes and final states of the printed parts. This review summarizes the morphing and actuation mechanisms of plants and concludes with the recent development of 4D-printed smart materials inspired by the locomotion and structures of plant systems. We provide analyses of the challenges and our visions of biomimetic 4D printing, hoping to boost its application in soft robotics, smart medical devices, smart parts in aerospace, etc

    Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI

    Full text link
    Influenced by the great success of deep learning via cloud computing and the rapid development of edge chips, research in artificial intelligence (AI) has shifted to both of the computing paradigms, i.e., cloud computing and edge computing. In recent years, we have witnessed significant progress in developing more advanced AI models on cloud servers that surpass traditional deep learning models owing to model innovations (e.g., Transformers, Pretrained families), explosion of training data and soaring computing capabilities. However, edge computing, especially edge and cloud collaborative computing, are still in its infancy to announce their success due to the resource-constrained IoT scenarios with very limited algorithms deployed. In this survey, we conduct a systematic review for both cloud and edge AI. Specifically, we are the first to set up the collaborative learning mechanism for cloud and edge modeling with a thorough review of the architectures that enable such mechanism. We also discuss potentials and practical experiences of some on-going advanced edge AI topics including pretraining models, graph neural networks and reinforcement learning. Finally, we discuss the promising directions and challenges in this field.Comment: 20 pages, Transactions on Knowledge and Data Engineerin
    corecore